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1 Introduction

The note [1] presents an interesting view on alternative representations of the Rijndael struc-
ture. The application of mathematical techniques is refreshing. The purpose of this reply is
to clarify that the observations made do not contradict the security claims we made. While
we are sure that the authors are fully aware of the merits and limitations of their results, we
feel that a less experienced reader might easily draw wrong conclusions.

From the beginning, our design strategy was to use as simple as possible components, to
define clear evaluation criteria, and to use simple components with easily provable properties
where possible.

This paper is organised as folows. We start in Section 2 with a few comments on the
used terminology. In Section 3 we restate our evaluation criterium for ‘diffusion’ and show
that the results of [1] compare to it. In Section 4 we explain the advantages of using simple
components, with provable properties. In Section 5 we explain the advantages of using a
simple structure. This is illustrated with an analysis of the DES that contradicts the results
of [1].

2 Block ciphers versus block cipher components

The authors of [1] claim to discuss unusual properties for the block cipher, that hold for any
number of rounds. However, they study the linear components of the round only. Therefore,
it is equally valid to state that the results hold for a fraction of one round only: in the
real cipher, applications of the linear layer are alternated with applications of the nonlinear
layer. Since the authors cannot extend their results over a nonlinear layer, they do not study
even a single round.

We think it is good practice to study the individual components of a cipher, but one
should be careful when drawing conclusions about the cipher’s security, because the cipher’s
security is based on an interaction of the components. As an illustration: for most ciphers, it
holds that if you take out all components except for the key addition, the cipher will become
an involution. “Any input text is mapped to itself after at most two iterations of the key
addition.” This property holds for any number of rounds. Nevertheless, most designers still
use a simple key addition, because despite this ‘unusual property’, it fulfills its function: in
combination with the other block cipher components, it can make the cipher resistant to
cryptanalysis.
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3 Properties of the diffusion layer

The note [1] questions the suitability of Rijndael’s diffusion layer, because 16 applications of
the linear mapping gives the identity mapping. We restate here that we defined ‘diffusion’ as
the minimum number of active S-boxes in a linear or differential characteristic. The observed
property may be untuitively unsettling, but has no impact on the number of active S-boxes.
Our definition for ‘diffusion’ is based on extensive experience with block cipher cryptanalysis:
almost all known cryptanalytic attacks have a complexity that depends on the number of
active S-boxes and the input/output correlation of individual S-boxes.

Secondly, the authors find input differences for a differential that make “only” 12 S-boxes
active. This should be understood as 12 S-boxes per round. Since our own security claims
are based on the (provable) lower bound of 25 S-boxes for every 4 rounds, a structure with
12 active S-boxes per round does not appear to be threatening to the security. Note that for
the DES, there are many differential characteristics with only 3 active S-boxes for every 2
rounds.

Another remark of the authors is the existence of 216 so-called parity check equations over
the linear mapping. It should not surprise many readers that such equations can be found
over a linear mapping. Indeed, it is exactly the function of the nonlinear layer to destroy
these properties.

The fact that the matrix describing the linear diffusion layer can be brought to a simple
form by means of a change of basis, as described in the note, is a very basic theorem of linear
algebra. However, when a cryptanalyst wants to use this simple matrix in an attack, he has
to take into consideration the effect of this change of basis on the nonlinear layer as well: a
change of basis in GF(2)128 will transform the neat 16 parallel instances of the S-box into
one huge S-box with 128 inputs, thus making further analysis non-trivial. It remains to be
seen whether this technique —which is by the way applicable to all block ciphers– can lead
to results on a block cipher, or even a block cipher reduced to a small number of rounds.

In short, the authors of [1] list several properties of the diffusion layer, but fail to show
any impact on the cipher’s security.

4 The use of simple components

In the Rijndael design, we opted to use simple components, with properties that can be proven
and verified very easily. Our documentation includes proofs (or references) for any security
result that we claim. E.g., the linear diffusion layer results in provable lower bounds on the
number of active S-boxes; the S-boxes have provable lower bounds for the nonlinear order, the
difference to linear functions, and the resistance to linear and differential cryptanalysis [2].

The advantage of using simple components becomes perhaps more clear when one considers
the problems experienced by the other design teams: both the Serpent design team and the
MARS design team did not produce S-boxes that are in accordance with their own design
criteria [3, 4]; the key dependent S-boxes of Twofish have made it apparently very difficult to
determine the security of the cipher [5].
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5 The use of a simple structure

Rijndael has an easily understandable mathematical structure, that can easily be split in its
components. This property should not be confused with the question whether it can easily
be broken. Exactly because of Rijndael’s ‘rich algebraic structure’, the cipher’s security can
more easily be assessed in the limited time frame available, compared to other designs that
require a lot of thinking and searching “where all the bits go”.

As an example of the fact that more complicated structures usually have the same (but
somewhat hidden) properties as simple structures, we had a closer look at the results of Sec-
tion 3.3 in [1]: ‘Comparison with DES’. This example also serves to illustrate the limitations
of the used analysis technique and the care one has to apply when drawing conclusions.

In [1], the diffusion properties of the DES are studied by taking out the expansion and
the S-boxes, as defined in the usual way. However, also for the DES, a cryptanalyst can
benefit from using other representations. In the definition of the S-boxes of the DES, we can
arbitrarily reorder the output bits of individual S-boxes. Provided we compensate for this
reordering adequately in the definition of the permutation P , the final results will be equal.
The reordering of the output bits of S-box i can be represented by a permutation li. Denoting
the combination of the eight li permutations with L1...8, we get:

P ◦ S1...8 = (P ◦ L−1
1...8) ◦ (L1...8 ◦ S1...8)

= P ′ ◦ S′1...8

This representation for the DES is equally valid as the original one.
Now, in a subsequent step, we can apply the same technique as in [1] for the ‘diffusion

analysis’ of the DES: we leave out the expansion and the S-boxes, concentrating on P ′ and
the Feistel Structure. The surprising result of this exercize is that for a suitable choice of
L, the diffusion layer of the DES will give the identity after only 12 applications (instead of
1020, as in [1]). For completeness, we give this choice of L in the Appendix. Note that we
expect it is possible to get this number down to 8 applications only, but the search can no
longer be done by hand.

There are two conclusions to be drawn here:

1. Also for complicately interwoven designs like the DES, ‘unusual’ properties can be de-
termined, but

2. these unusual properties are no sign of inherent weaknesses in the design.

6 Conclusion

Rijndael is a cipher with a simple and elegant structure. It shows an adequate security
margin against cryptanalytic attacks, not only against linear and differential cryptanalysis,
as remarked in [1, p. 3, Section 3], but also against ‘more opportunistic attacks’ [7, 8, 9, 10].

Some people argue that an encryption algorithm should not only produce output without
apparent structure, but should also hide its own structure by using complex components.
This approach is different from ours. This difference in approach by itself should not be seen
as a weakness of a design.
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A An equivalent representation of the DES that appears to
have unusual properties

We give the 8 bit permutations, using the same notation as in [6].

l−1
1 : 2 1 3 4
l−1
2 : 4 1 2 3
l−1
3 : 3 4 2 1
l−1
4 : 4 1 3 2
l−1
5 : 4 1 2 3
l−1
6 : 1 2 4 3
l−1
7 : 4 2 3 1
l−1
8 : 4 1 2 3

The reader can verify that P ◦ L−1 has one cycle of order 2 and 10 cycles of order 3.
Together with the Feistel structure, this results in an order of 12 for the linear diffusion.
Probably, there exists L mappings with cycles of order 4 only, which would give the linear
diffusion order 8.
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